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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in I986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

pmgrarn of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilitaes. JSC agreed and entered into a continuing coopemtlve agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to

conduct the research.

i

J

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research - :

and p_fesstonal level education in computing and information systems to

serve the needs of the government, indusLry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest o --

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences. = =

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Mo_ver, UHCL established relationships with Other universities and re- _

search organizations, having common research interests, to provide addi-
tional sources ofexpertlse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee R!CIS research anl education pmgran_ while other research -_

organizations are involved via the *gateway" concepL

A major role of RICIS then is to find the best match of sponsors, researchers

and research obJcctives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jolntly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results Into the goals ofUHCL, NASA/JSC and industry.
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Despite the advancements in the computer industry in the past thirty

years, there is still one major deficiency. Computers are not designed to

handle terms where uncertainty is present. To deal with uncertainty,

techniques other than classical logic must be developed. This paper

examines the methods of statistical analysis, the Dempster-Shafer

theory, rough set theory, and fuzzy set theory to solve this problem. The

fundamentals of these theories are combined to possibly provide the

optimal solution. By incorporating principles from these theories, a

decision-making process may be simulated by extracting two sets of

fuzzy rules: certain rules and possible rules. From these rules a

corresponding measure of how much we believe these rules is constructed.

From this, the idea of how much a fuzzy diagnosis is definable in terms of

a set of fuzzy attributes is studied.

m

RI!

m

B

I

il

m
I

IIii

m

lib

W

m

i

lib

lib :

W

m
m

U

m

i

!11

i

I



g

w Acknowledgements

V

I would like to express my thanks to Dr. Andre' de Korvin for his very

helpful advice throughout the semester. It is his paper, Extracting Fuzzy Rules

under Uncertainty and Measuring Definibility using Rough Sets, which provided the

cornerstone for my research and the blueprint for my software.

I would also like to extend my thanks to Dr. Kenneth Oberhoff for his

helpful insights in all phases of software design and programming

algorithms.

Finally, I also extend my thanks to Dr. Richard A. AIo' for his

constructive comments throughout the semester regarding presentations

and all initial drafts of this document.



MEASURING UNCERTAINTY BY EXTRACTING

FUZZY RULES USING ROUGH SETS

TABLE OF CONTENTS

Abstract ...............................................

Introduction ...........................................

Page
i

i

Section I:

1.1

1.2

Uncertainty .................................. 5

Uncertainty .................................... 5

Techniques to Combat Uncertainty ................ 7
1.2.1 Statistics .............................. 7

1.2.2 Dempster-Shafer Theory .................. 8

1.2.3 Fuzzy Set Theory ........................ 9

2

31.3
1.2.4 Rough Sets .............................. 1

The Proposed Solution .................... ....... 1

Section 2: RoughSet theory vs. Fuzzy Set theory ......... 1

2.1 Rough Sets - a closer examination ................ 1
2.2

2.3

2.4

5
5

Fuzzy Sets - a closer examination ................. 20

2.2.1 Functions of Fuzzy Set Properties .......... 20

Establishing Certain and Possible Rules ............ 22
2.3.1 Threshold Values ........................ 24

2.3.2 Extracting Possible and Certain Rules ...... 25

Definibility of Terms ............................ 26

Section 3: Application: Tumor Diagnosis .................. 28

Section 4: Software Specifications ....................... 32

4.1 Software Specifications ......................... 32

4.1.1 Input .................................... 33
4.1.2 Functions and Calculations ................ 34

4.1.3 Output .................................. 35

Section 5: Conclusion ................................... 36

References ............................................. 3 8

Appendix A -- Program: The Cul_-Worm Decision-Maker

I

U

I

I

IB

I

m

I

g

mm
N

m
i

w

lib

m

m i



=

INTRODUCTION

Ih

v

v

v

r.
w

Computers have progressed so much over the past thirty years that

it is now hard to imagine life without them. They have become smaller,

faster, and less expensive.

have grown exponentially.

Similarly, the applications we use them for

If the auto industry had done what the

computer industry has done in this time, a Rolls-Royce would cost a

couple of dollars and might get a million miles per gallon.

An important development of this progression is the computer's

ability to refine and expedite the decision-making process. One can enter

raw data as input and receive the output in an organized, logical form.

This manipulated form may then be used to help facilitate some type of

decision by the user. It is also possible for a computer program to have a

built in "thinking" function which requires no help from the user in order

to formulate a decision. A decision may be automatically made by the

computer, solely on the output and any preset conditions of the output.

This may be achieved through a series of If-then-else statements, for



example.

A program which can perform these simple functions is possible

through knowledge acquisitions using examples. Through repetition, one

may learn to associate certain factors to form a decision. Ideally, the

decisions will always be the same if the corresponding factors are always

the same. For example, if a person sees lightning and hears thunder, they

may assume it is raining close by from some similar experiences in the

past. Again, this is under "ideal" circumstances; the person is positive

they see lightning and positive they hear thunder. Unfortunately, "ideal"

circumstances are not always present.

As amazing as the progression of computers has been, there is a

noticeable deficiency: computers are not designed to manipulate data

where uncertainty is present. Uncertainty may arise in many different

ways. it may be brought about by ambiguous terms used to describe a

certain situation. It may also be caused by scepticism of rules used to

describe a course of action, or by missing or erroneous data. To handle

uncertainty, methods other than classical logic must be developed. One

possible solution to this is to use fuzzy set theory to extract rules.

In ordinary set theory, an element is either in or out of the set. In

fuzzy set theory, however, an approximation is used to determine the
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degree to which an element is in the set. This is due to the fact that

subjective terms are often used to describe a condition. Fuzzy set theory

allows for a fraction of an element to be in the set. From these fuzzy

sets, one can extract two sets of fuzzy rules: certain rules and possible

rules. Basically, the certain rules are formed by taking the minimum of

the union of two fuzzy sets. Conversely, the possible rules are formed by

taking the maximum of the intersection of two fuzzy sets.

A possible solution to deal with uncertainty is in learning from

examples. An effective method to acquire knowledge through examples is

rough sets. Rough sets are the group of sets having the same upper and

lower approximations. As in fuzzy set theory, possible and certain rules

are extracted. In rough sets, these rules are generated by the upper and

lower approximations. These qualities are similar to the inner and outer

reductions of Dempster-Shafer theory. The theory and notation of upper

and lower approximations is discussed in more detail in section 2.1. The

attributes of the conditions are assigned values and a measure of how

much these attributes determine the diagnosis is established. However,

the values of these attributes require some judgement for their

determination. Similary, the diagnosis is often not of "pure" type, but a

combination which is reflective of fuzzy sets.

3



Combining these two methods of fuzzy set and rough set theories, as

well as the principles of Dempster-Shafer theory, provides a possible

optimal solution for dealing with uncertainty. By integrating these two

methods, we can produce a set of certain rules and possible rules and

determine a measure of belief associated with these rules. These rules

allow a foundation for dealing with uncertainty in the decision-making

process.
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Uncertainty

I.I Uncertainty

and "crunched" them up to come to a certain decision.

that arises is, "How does one deal with uncertainty?".

The previously referenced computer program took certain variables

A major question

Uncertainty may

arise in many different situations. It may be caused by the ambiguity in

the terms used to describe a specific situation, or it may be caused by the

skepticism of rules used to describe a course of action. Uncertainty may

also be caused by inconsistencies in data, or simply by missing or

erroneous data.

To understand what is meant by ambiguity of terms, one must

realize that different people may associate different meanings or values

for the same term(s). To illustrate this, one cannot put a set value on

"very rich" or "moderately rich" because these are subjective terms. One

person's definition may be quite different from another's. For this reason,

descriptive terms may contain some degree of ambiguity, and therefore

some degree of uncertainty.

5



Uncertainty caused by the skepticism of rules may be attributed to

an underlying doubt one may have regarding a situation. Occasionally, all

factors may point towards a certain decision, but one's "gut feeling"

produces a degree of doubt toward that decision. Whether these doubts

are warranted or not, they must be taken into account when we refer to

uncertainty. For these doubts may influence one's future decisions on

similar situations.

Clearly, any missing or erroneous data will lead to uncertainty.

Unfortunately, it is not always obvious when data is wrong. A strong

characteristic of erroneous data is inconsistencies. In other words, if the

same data produces conflicting Outcomes, uncertainty is present. To

illustrate this, the table below represents how a decision-maker may

make an inconsistent decision based on a couple of pieces of data. In this

example, Case X2 and Case )(3 have the same data, yet different decisions.

This shows that uncertainty exists somewhere in this decision-making

process.

CONDITIONS

OATAI DATA2

Xl W Y A

X2 X Z B

X3 X Z A
X4 X Y B

W Y A
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1.2 Techniques to Combat Uncertainty

1.2.1 Statistics

To deal with uncertainty, techniques other than classical logic need

to be developed. The most useful tool for handling probability is

statistics, or statistical analysis. Statistical analysis is concerned

with the collection, organization, and interpretation of data according to

well-defined procedures. Observations are made and converted into

numerical form. The numbers are manipulated and organized, with the

results interpreted and translated back into a way one may understand.

Statistical analysis allows for the reduction of data. Large masses

of unorganized numbers may be characterized into smaller sets that

describe the original observations without sacrificing critical

information. The second major role lies in its use as an inferential

measuring tool. In other words, it provides procedures for stating the

degree of confidence one may have in the accuracy of the measurements

one makes. Finally, statistical analysis allows one to make distinctions

about relationships that exist between and among sets of observations.

Does knowledge about one set of data allow us to infer or predict

characterisics about another set of data?

Stastistical analysis does, however, have some deficiencies. Data

7



reduction may lead to the sacrificing of detail. The inferential measuring

tool statistical analysis provides is useful, but all measurements are

subject to error. Furthermore, sometimes one may strive to find a

connection between two sets so much that a connection is unjustifiably

made.

Though statistics is a useful method for handling uncertainty, it

provides only a foundation for the problem of knowledge acquisition under

uncertainty. Three theories which are better suited to handle this

problem are: Dempster-Shafer Theory, fuzzy set theory, and rough set

theory.

1.2.2 Dempster-Shafer Theory

The Dempster-Shafer Theory is a theory of evidence and probable

reasoning. It is a theory of evidence because it deals with weights of

evidence and with numerical degrees of support based on evidence. It is a

theory of probable reasoning because it focuses on the combination of

evidence, more specifically, the combination of belief functions.

The theory begins with the idea of using a number between zero and

one to indicate the degree of belief one should assign for inclusion on the

basis of the evidence. Its focus lies in the combination of degrees of

belief based on one body of evidence with those based on an entirely

8
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distinct body of evidence. This combination of belief functions is the

heart of the Dempster-Shafer Theory. Given several belief functions

based on distinct bodies of evidence, this theory enables one to compute a

new belief function based on the combined evidence.

The main connection Dempster-Shafer has to the other theories is

the concepts of inner and outer reductions. As will be shown in the

discussion concerning rough sets (section 2.1), this concept is almost

identical to the lower and upper approximations of rough sets.

reduction, denoted by 9.(A), is the largest subset that implies A.

In inner

The outer

v

reduction, denoted by _(A), is the smallest subset that is implied by A.

Another connection the Dempster-Shafer theory holds to that of

rough set theory is its belief and plausibility theorems. Given a belief

r

function (Bel) committed to the subset A one is given BeI(A). This

function allows one to study the extent to which the evidence supports the

negation of A, i.e. -_A, --> BeI(A). Thequality [1 - BeI(A)] expresses the

plausibility of A; the extent to which the evidence allows one to fail.

These theories are very similar to rough set theory.

1.2.3 Fuzzy Set Theory

Perhaps the most useful tool when dealing with uncertainty is fuzzy

--=

W

set theory. This theory is the most practical where ambiguous terms are

9



present. To get a complete understanding of this theory, one must first

backtrack to ordinary set theory. All branches of mathematics are

developed, consciously or unconsciously, in set theory or some part of it.

It is, therefore, an important concept to grasp. A set is a collection of

things (called elements or members), the collection being regarded as a

single object. An item is either in the set or it is not. This property is

referred to as inclusion.

In fuzzy set theory, however, an approximation is used to

determine the degree to which an element is in the set. Such concepts as

inclusion or set equality may seem too strict. Usually, the structures

embedded in fuzzy set theories are less rich than the boolean lattice of

ordinary set theory. Unlike ordinary set theory, one cannot determine the

cardinality, or size, in fuzzy set theory. One cannot compute an accurate

union or intersection of two fuzzy sets because the elements are

estimates of inclusion, not "crisp" values.

If the value of a set is allowed to be the real interval [0,1], A is

called a fuzzy set. The grade of membership of an element, x, in A is

i_A(X). The closer the value of I_A(X) is to 1, the more x belongs to A.
- T

Similarly, the lower the value of _A(X), the less x belongs to A. Clearly, A

is a subset of x that has no crisp boundary. By using fuzzy set theory, one
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must approximate the value of inclusion an element has in a set.

Earlier the question was raised, "What is the difference between

'very rich' and 'moderately rich'?". Fuzzy set theory could approximate a

person worth $X to be .4/very rich and .8/moderately rich. Because of the

ambiguity of the term "rich", one needs to approximate the value of the

person for "very rich" and "moderately rich". It might be observed that, for

the decision-maker assigning the values, the person falls into the

category of "moderately rich" more than "very rich". For this reason, the

decision-maker puts more "weight" on the term "moderately rich". The

person lies within the set of "moderately rich" more than the set of "very

rich". Hence, they are assigned those corresponding values.

A problem one may encounter using this theory is the fact that the

decision-maker assigns these values. Obviously, not all people have the

same pre-conceived meanings for terms such as "very rich" or "extremely

tall". The approximations one person gives may be completely different

from the approximations of someone else. For example, a small boy may

see a man 5'9" as "very" tall. Conversely, a professional basketball player

might see the same person as "average" height. It is best to keep this in

mind, because it can easily influence the decisions.

=
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1.2.4 Rough Sets

As was stated earlier, the most traditional way of acquiring

knowledge is based on learning from examples. An another effective tool

of inferring knowledge from examples is rough sets. Rough sets are the

family of sets having the same lower and upper approximations.

Let U be a non-empty set, call the universe, and let R be an

equivalence relation on U, called an indiscernibility relation. An ordered

pair A =(U,R) is called an approximation space. For an element x of U, the

equivalence class of R containing x will be denoted by [x]R. Equivalence

classes of R are called elementary sets in A. We assume that the empty

set is also elementary. Any finite union of elementary sets in A is called

a definable set in A.
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Two more concepts, known as the lower approximation and upper

approximation of X in A are examined later. Basically, the lower

approximation of X in A is the greatest definable set in A, contained in X.

The upper approximation of X in A is the least definable set in A

containing X. These concepts correspond to the inner and outer reductions

from Dempster-Shafer Theory, also examined later. A rough set in A is

the family of all subsets of U having the same lower and upper

approximations in A. These concepts are examined in more detail in
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section 2.1.

There are essential connections between rough set theory and

Dempster-Shafer theory. For example, the lower and upper approximations

of rough set theory exist under the names of inner and outer reductions,

respectively. Similary, the qualities of lower and upper approximations of

rough set theory are the belief and plausibility functions, respectively, of

Dempster-Shafer theory.

The main difference between rough set theory and the Dempster-

Shafer Theory is in the emphasis: Dempster-Shafer Theory uses belief

functions as a main tool, while rough set theory makes use of the family

of all sets with common lower and upper approximations. The main

advantage of rough set theory is that it does not need any preliminary or

additional information about data.

1.3 The Proposed Solution

The main purpose of this work is to study the setting described

before where a decision-maker is faced with uncertain (i.e. fuzzy)

conditions and makes a fuzzy decision which might be strongly or weakly

based on these symptoms. Here, the techniques or fuzzy set theory and

rough sets will be incorporated to attempt to provide the optimal solution

13
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of measuring uncertainty. From the conditions and decisions, one will find

that fuzzy rules may be extracted. In fact, one may extract two sets of

rules: certain rules and possible rules. One may also determine a measure

of how much they believe in these rules.

The main body of this work is examined in detail in Section 2. The

basic notations and results necessary to fully understand these concepts

are discussed here. Section 3 offers a detailed example of these concepts

at work. It provides an everyday application, as well as an opportunity to

see how these principles are incorportated. The software specifications

of this product, which simulates the basic ideas set forth here, is

available in Section 4. The coding of this program may be found in

Appendix A.
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Rough Set theory vs. Fuzzy Set theory

m
As stated in Section 1, I believe the optimal solution for knowledge

acquisition under uncertainty lies within the combination of fuzzy set and

rough set theories. By integrating the fundamentals of these theories, I

h_
w

hope to measure and, where possible, minimize the degree of uncertainty.

To best understand how the concepts of fuzzy sets and rough sets are to

be incorporated, it is important to first grasp the main principles of these

two theories.

=

w

2.1 Rough Sets - A Closer Examination

Let U be the universe, R an equivalence relation on U, and X any subset

of U. If [X] denotes the equivalence class of X relative to R, we can then

define the foundation of rough sets. This is called the lower and upper

approximations of X and is denoted, respectively, by:

R(X)=(XEU/[X]cX) and

_(x)=(x_ u/[x]n x,_).

Once again, rough sets are the family of all subsets in U having the same

15



upper and lower approximations.

To examine these upper and lower approximations closer, we define

an information system as the quadruple (U,Q, V,"E) where Q - C L) D and

C r_ D ---_. The set C stands for the set of conditions, and D is the set of

decisions. We assume that C is equal to the set of attributes, Q. The set

V stands for value and • is a function from U x Q into V where _(u,q)

denotes the value of attribute q for element u. For example, the pulse rate

q of patient u. The set C produces an equivalence on U by partitioning U

into sets over which all attributes are constant. A rough set is classified

by properties of its lower and upper approximations. The set is called

roughly C-definable if:

R (X) ;_C_ and R (X') _ U.

The set is internally C-undefinable if:

R (X) = _ and R (X) ;_ U.

The set is externally C-undefinable if:

R (X) _ O and i_i (X) = U.

The set is totally C-undefinable if:

FI (X) = O and R (X) : U.

16
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To illustrate some of these ideas, the table previously referenced is

examined again. For this example, Decision 'B' denotes sickness. The

conditions produce a partition on {Xl,X2,X3,X4,Xs}, namely { {Xl,X5}, {X2,X3}

{X4} }. The decision-maker defines "sick" people by X = {X2,X4}. Thus, the

CONDITIONS

lower and upper

CASE DATAI DATA2 DECISION

Xl W Y A

x2 x z B
X3 X Z A
X4 X Y B

X5 W Y A

approximations are R (X) = {7,4} and _ (X) = {X2,X3,X4}. These upper and

lower approximations are used to extract the certain and possible fuzzy

rules, respectively. For this particular example, the set {X4}

representsthe set of people who are sick for certain, while the set {X2,X3,

X4} represents the set of people who possibly could be sick. For the case

X3, decision 'B' could lead to the question, "Why is that case possibly

sick?". The reason is because of the inconsistencies created by X2 and X3,

and the fact that the same conditions lead to sickness (decision 'A') for X2.

Because R(X) _ O and I_(X)_ U, X is roughly C-definable.

For an internally C-undefinable set X in S we can not say with

t7
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certainty that any x _ U is a member of X. To demonstrate this case, we

assume an additional case, Xs, is added to the previous table. We now

have:

CONDITIONS

CASE OATAI OATA2 P.E.CJ._SJ._
Xl W Y A

X2 X Z B

x3 x z A
X4 X Y B

xs w Y A
X6 X Y A

This creates a new partition of X = { {Xl,X5}, {X2,X3} , {x4,x6} }. We now

have no certain cases of sickness, because for every case corresponding to

sickness, there is an inconsistency to match it. Therefore, R(X) = E_ and

_(X) = {X2,X3,X4,Xs}.

For an externally C-undefinable set X in S we can not exclude any x

U being possibly a member of X. If case Xl were changed to produce this:

CONDITIONS

CASE OATAI OATA2
Xl W Y B

x z B
X3 X Z A

X4 X Y B

X5 W Y A

X Y A
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The new partition of { {Xl}, {X2,X3}, {X4,X6}, {Xs} } would be created. This

would then make R(X) = {_} and R(X) = {Xl,X2,X3,X4,X5,X6} or R(X) = U.

Thus,we could say all six cases are possibly sick.

The difference between the lower and upper approximations may be

attributed to the presence of inconsistencies. If it were not for the

inconsistencies, the decision-maker's opinion would be in line with the

upper and lower approximations produced by C. Therefore, X would be

totally expressible in terms of C. It is this difference between R(X) and

R(X) that offers a measure of how well the diagnosis of the decision-

maker follows the conditions. If the decision-maker is an "expert", the

difference between the lower and upper_ approximations gives one a

measure of how good conditions C are to determine the diagnosis. In other

words, the more we trust the decision-maker, the more we believe how

r _

the conditions determine the diagnosis. Moreover, it is these lower and

upper approximations which generate the rules that will be used as the

basis for the decision-making process. These generated rules, called the

certain and possible rules, will be examined closer in Section 2.2.

Unfortunately, there may be uncertainty in the conditions, as well as

the diagnosis. The conditions and the diagnosis rarely partition the

universe into "crisp" sets. This is due to the fact that most of the values

19
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of attributes are descriptive, and thus subjective terms. It is this that

leads to the "fuzziness" of the conditions/diagnosis when trying to define

the terms. This "fuzziness" can lead to overlapping, therefore rendering

crisp partitions nearly impossible. At best one hopes the terms can be

partitioned with as little overlapping as possible.
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2.2 Fuzzy Sets - A Closer Examination

For all decision-making processes, it is the rules which guides one

towards a decision. Decision-making under uncertainty is no different.

The problem lies within determining these rules. As stated in Section 2.1,

the upper and lower approximations generate possible and certain rules.

It is Fuzzy Set theory which allows one to extract these fuzzy rules.

2.2.1 Functions of Fuzzy Set Properties

To understand how these rules are extracted, one must first be

familiar with the notation. A fuzzy subset A of U is defined by the

function" I_A " U ..... > [0,1].
=

This simply states that the values of the fuzzy subset A fall between 0

and 1. If A and B are fuzzy subsets, the properties A c_ B, A L)B, and-_A are

defined by the functions: Min{I_A(X),_B(X)} , Max{_A(X),_B(X)}, and

1-_A(x), respectively. The property -_A u B corresponds to the function
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Max{1-A(x), B(x)}. These computed values are the foundation for

extracting the rules. Therefore, it is very important to understand what

is meant by the notation.

The first function, Min{I_A(X),p.B(X)}, is computed by matching up the

corresponding elements of the fuzzy subsets and taking the minimum (in

value) of the two. For example, given the two fuzzy subsets:

A --- (.3, .4, .7, .8, .6, .1) and

B --- (.6, .2, .4, .3, .5, .4)

One can compute Min(A,B) = (.3, .2, .4, .3, .5, .1). The second function,

Max{_A(X),I_B(X)}, is similar in computation to the first. Instead of taking

the minimum of the two, one takes the maximum, or greatest in value.

Using the two previous subsets of A and B, one can compute Max (A,B) =

(.6, .4, .7, .8, .6, .4). The third function, 1 -_A(X), is computed by taking

one(l) minus the values of the fuzzy subset. Again, using the previous

subset A, one can compute 1-A., (.7, .6, .3, .2, .4, .9). The last function,

Max{1-A(x), B(x)}, is simply a combination of the second and third

functions. First, one computes 1-A(x) then compares that to B(x), taking

the maximum of the two. For example,

Max{l-A, B} -- Max{(.7, .6, .3, .2, .4, .9),(.6, .2, .4, .3, .5, .4)}

$ $ $

Max{l-A, B} = (.7, .6, .4, .3, .5, .9).

21
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is included in B.

and is defined as:

2.3 Establishing Certain and Possible Rules

Now that the fundamental properties (and corresponding notation)

have been explained, we can define two functions of major importance to

this work. These two functions are on pairs of fuzzy sets and allow us to

extract the rules. We assume here that A and B denote fuzzy subsets of

the same universe. The function I(A c B) measures the degree to which A

This function computes the rules generated by certainty

I(A c B) = inf Max{1-A(x), B(x)}.
X

The function J(A#B) measures the degree to which A intersects B. This

function computes the rules generated by possibility and is defined by:

J(A#B) = max Min{A(x), B(x)}.
X

The function I(A c B) is computed by first finding Max{1-A(x), B(x)}, then

taking the minimum term. For the previous fuzzy subset examples of A

and B, we found the Max{l-A, B} = (.7, .6, .4, .3, .5, .9). Since the minimum

term is .3, I(A c B) = .3. The function J(A#B) is computed by first finding

Min{A(x), B(x)}, then taking the greatest (in value) term. Again, using A

and B we found Min{A,B} = (.3, .2, .4, .3, .5, .1). Since the maximum term is

.5, J(A#B) = .5.
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W For the example used in this work, we assume the decision-maker is

faced with different conditions, or attributes, and makes a decision based

on the values of these attributes. To provide a more concise explanation

of this work, we will limit the number of possible decisions to two (2).

Similarly, we will limit the description an attribute may have to two (2).

For example, size can only be measured as a degree of large and small.

These limitations are made to explain when to compute the I(A c B) and

J(A#B) values.

For the functions of I(A c B) and J(A#B), A denotes the descriptions

of the attributes, while B denoteS;the-possible decisions. For each

description, we must measure the degree to which it is included in

decision 'A' as well as in decision 'B'. ; In addition to this, we also measure

the degrees of intersections of the descriptions for each decision. For

example, if we have attribute-1 with descriptions of 'W' and 'X',

attribute-2 with descriptions of 'Yr and 'Z', and possible decisions of 'A'

and 'B', we would need to compute all of the following"

I(WcA) I(YcA) I(WnYcA) I(WnZcA)

I(WcB) I(YcB) I(WnYcB) I(WnZcB)

I(XcA) I(ZcA) I(XnYcA) I(XnZcA)

I(XcB) I(ZcB) I(XnYcB) I(Xr-_Z.cB)

23



J(W#A) J(Y#A) J(WnY#A) J(WnZ#A)

_J(W#B) J(Y#B) J(WnY#B) J(WnZ#B)

J(X#A) J(Z#A) J(XnY#A) '' J(XnZ#A)

J(X#B) J(Z#B) J(XnY#B) J(XnZ#B)

2.3.1 Threshold Values

As one can see, this leads to large numbers of rules. For this case,

we would have 32 rules: 16 certain rules and 16 possible rules. If we had

3 attributes with 2 descriptions each, the number of rules would increase

to 104 rules. It is therefore essential to establish a "threshold" value,

denoted by a, for which we may ignore all rules falling below this value.

Actually, we need two of these values: one for the certain rules and one

for the possible rules. The decision-maker may or may not set these two

equal. The higher we set the threshold, the higher the belief we have for

the rules which factor above it. Unfortunately, there is a trade-off; for

the higher the threshold, the more rules we ignore. Ideally, the solution to

this trade-off ist0 allow the decision-maker to interactively change the

threshold values as they see fit. By allowing this interactive changing, it

also provides somewhat of a sensitivity analysis. The decision-maker can

immediately see which rules are affected by the changing threshold value.

Another reason to promote interactive changing of the threshold is that

the value of (x is very much problem dependent. A value of (x = .5 might be

24
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appropriate for one problem, but irrelevant for another. The decision-

maker may adjust the value till it is set at the most appropriate level.

2.3.2 Extracting Possible and Certain Rules

Once the threshold value has been established, it is time to extract

the rules. All rules (values of I and J) which fall below the threshold

value are immediately eliminated. To further eliminate rules, we have

certain provisions. First, all rules with unique I and J values are kept.

Second, if more than one rule has identical I values, we keep (extract) the

"smaller" in terms of attributes. For example, if we were to obtain the

following certain rules:

If W then A is present .6

If W and Y then A is present .6

If W and Zthen A is present .6

(1)
(2)
(3)

we would keep rule (1) because rules (2) and (3) offer no significant data.

Conversely, if these three rules were computed using J values, thus

making them possible rules:

If W then A is possible .6

If W and Y then A is possible .6

If W and Z then A is possible .6

we would extract rules (5) and (6).

the possibility of rule (4).

(4)
(5)
(6)

This is because rules (5) and (6) imply

The concepts discussed up to this point are represented in an

example in section 3.
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2.4 Definibility of Terms

Now that all the certain and possible rules are extracted, we can

measure the definibility of terms. The goal of this is to define the terms

in the decisions as a function of the terms in the conditions. How well

this can be accomplished is a function of how much the decision follows

the conditions.

Let {Qi} be a finite family of fuzzy sets. This family of sets does not

necessarily form a partition on the universal set. Let A be a fuzzy set. A

lower approximation of A through {Qi}, produces the fuzzy set:

R(A) = U I(Qi c A) Qi.

Here, U denotes the union of fuzzy sets, and I(Qi c A) Qi denotes the fuzzy

set obtained by multiplying the components of Qi by I(Qi c A). Therefore, if

Qi is very much a subset of A, I(Qi c A) Qi is close to the whole set Qi.

Conversely, if I(Qi c A) is small, so is the contribution of Qi to R(A).

Similarly, we can define an upper approximation of A through {Qi} by:

]_(A) = U J(Qi # A) Qi. :: _

In the special cases where all the sets are crisp, and {Qi} denotes a

partition generated by an equivalence relation R, then the lower

approximation is defined as'

R(A) = {X / [X] c A},

26
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and the upper approximation is defined as:

-R(A)= {X / IX]n A O}.

One can therefore see that in this crisp case:

R(A) c A c R(A).

One should not, however, expect these inclusions to hold in the fuzzy case

because boundaries of the relevant sets are poorly-defined.

It is important, however, to realize that even if the decisions

completely follow the conditions, the rules generated are not necessarily

100% accurate. To illustrate this, we can substitute tumor color with

shirt color when dealing with medically-based decisions. We might find

that for 100 cases of cancer, all cases involved blue shirts. Does this

mean blue shirts may promote cancer? The answer is, or course, no, but it

forces the decision-maker to choose the conditional attributes carefully.

The more the decision-maker knows the conditions influence the

decisions, the more accurate the generated rules will be.

r_
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Application: Tumor Diagnosis

w

lib

[]

As stated earlier in this paper, knowledge aquisition is best

accomplished by looking at examples.

an example of the concepts discussed in section 2.

application, these concepts should become clearer.

It is therefore important to provide

By examining an

The analogy to be used here is that of a doctor (decision-maker)

examining the characteristics (attributes) of tumors and rendering a

diagnosis (decision). For this example, the attributes are size and color.

Size can be described as large and small. Color will be limited to the

descriptions of blue and red. The possible diagnosises will be either

Disease 'DA' and 'DB'.

While examining seven patients, the following data is accumulated:

COLOR
P1 .3L + .8S .2R + .9B .3/DA + .6/DB

P2 .4L + .7S .4R + .7B .8/DA + .5/DB

P3 .7L + .4S .6R + .7B .5/D^ + .9/DB

P4 .8L + .5S .3R + .8B .7/DA + .3/DB

P5 .2L + .7S .2R + .5B .4/DA + .2/DB

P6 .9L + .2S .8R + .2B .7/DA + .8/DB

P7 .3L + .6S .7R + .1B .4/DA + ,5/DB
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From this data, we can extract the fuzzy sets for each of the descriptions

(of the attributes) and for each diagnosis. These fuzzy sets are:

FUzzY SETS:

L = .3/PI + .4/P2 + .7/P3 + .8/P4 + .2_/P5+ .9/P6 + .3/P7

S = .8/PI + .7/P2 + .4/P3 + .51P4 + .71P5 + .2/P6 + .6/P7

R = .2/PI + .4/P2 + .6/P3 + .3/P4 + .2/P5 + .8/P6 + .7/P7

B = .9/PI + .7/P2 + .7/P3 + .8/P4 + .51P5 + .2/P6 + .I/P7

DA = .3/PI + .8/P2 + .5/P3 + .7/P4 + .4/P5 + .7/P6 + .4/P7

DB = .6/PI + .51P2 + .9/P3 + .3/P4 + .2/P5 + .8/P6 + .5/P7

Now that we have established the fuzzy sets, we can compute the values

of I(A c B) and J(A # B) to establish -the rules. These values are as

m

z=

lk=_

=
w

z

follows"

I(Lc DA) =.5

I(S c DB) = .3

I(B c DA) = .3

I(L n R c DB) = .6

I(S n R c DA) = .4

I(S n B c DB) = .5

J(S#DA)=.7

J(R # DB)= .8

J(L n R # DA) = .7

J(L n B # DB) = .7

J(S n B # DA) = .7

I(L c De) = .3

I(R c DA) = .4

I(B c DB) = .3

I(LnB c DA) = .5

I(SnR c De) = .5

J(L# DA)=.7

J(S # DB) = .6

J(B#DA)=.7

J(LnR # DB) = .8

J(Sn _R_# DA) = .4

J(S r_ B # DB) = .6

I(ScDA) =.3

I(R c DB) = .5

I(Ln R c DA) = .5

I(L n B c DB) = .3

I(S c_ B c DA) = .3

J(L # DB) =.8

J(R#DA)=.7

J(B # DB) = .7

J(L n B # DA) = .7

J(S n R # DB) = .5

Assuming that we have already established the threshold value ((z) for

certain rules to be o_ = .5 and for possible rules to be (z = .6, we are left

w
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with the following rules:

CERT,_DN RULES:

If the tumor =s large then DA is present 0.5.

If the tumor is large and red then DA is present 0.5.

If the tumor =s large and blue then DA is present 0.5.

If the tumor _s red then DB is present 0.5.

If the tumor _s large and red then De is present 0.6.

If the tumor ss small and red then DB is present 0.5.

If the tumor is small and blue then DB is present 0.5.

POSSIBLE RULES:

If the tumor is large then DA is possible 0.7.

If the tumor is small then DA is possible 0.7,

If the tumor is red then DA is possible 0.7.

If the tumor is blue then DA is possible 0.7.

If the tumor =s large and red then DA is possible 0.7.

If the tumor _s large and blue then DA is possible 0.7.

If the tumor =s small and blue then DA is possible 0.7.

If the tumor =s large then DB is possible 0.8.

If the tumor Is small then DB is possible 0.6.

If the tumor _s red then DB is possible 0.8.

If the tumor =s blue then DB is possible 0.7.

If the tumor =s large and red then DB is possible 0.8.

If the tumor =s large and blue then DB is possible 0.7.

If the tumor _s small and blue then Ds is possible 0.6.
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Finally, we extract the certain rules and possible rules in which to keep

by using the theory explained in section 2.3. This leads to the following

rules:

EXTRACTED CERTAI_ RULES:

If the tumor is large then DA is present 0.5.

If the tumor is red then DB is present 0.5.

If the tumor is large and red then D8 is present 0.6.

If the tumor is small and blue then DB is present 0.5.

EXTRACTED POSS0BLE RULES:

If the tumor is large and red then DA is possible 0.7.

If the tumor _s large and blue then DA is possible 0.7.

If the tumor is small and blue then DA is possible 0.7.

If the tumor is large and red then DB is possible 0.8.

If the tumor _s large and blue then DB is possible 0.7.

If the tumor ts small and blue then DB is possible 0.6.

w_.
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Software Specifications []

I

4.1 Software Specifications

The following is an attempt to describe the requirements

specifications for the software to be developed for partial fulfillment of

the senior project (CS 4395). The software should be designed to

simulate the main ideas in Dr. Andre' de Korvin's paper, "Extracting fuzzy rules

under uncertainty and measuring definibility using rough sets."

As in all good software design, the software should be above all user-

friendly. It should be designed to allow a user to "walk-through" the

system. This can be achieved through screen messages at every step and

error messages when appropriate (improper data entry). The software

should also be modifiable so that it may be expanded in the future. This

can be achieved through well-documented modules. The software should

also be efficient and reliable.

These are the goals of every software system. The following is a

list of the functions, goals, and constraints of this particular system, in

some instances, examples are used to better explain the concepts.
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4.1 .I Input

The user should be able to:

A°

B=

C.

Enter any number of attributes.

The paper uses two, for example: size and color. The user

should also be allowed to have any number of descriptions for

each attribute. The paper describes size with values of large
and small. The user should also be able to use medium.

Enter data in any numeric form.

1) The form the data is entered in the paper is in "fuzzy form",

where all values are between 0 and 1. The software

should certainly be able to manipulate data which is

entered in this form.

to enter "real data".

numbers:

10 40

15 27

60 35

In addition, the user should be able

For example, given the following

5 5O

8O 25

55 33

The software should be able to convert 55 to

55 -> .3/Low + .7/High

2) The user should also be able to set the boundaries for the

data to be entered. Using the numbers from above, the

user may wish to declare 10 as the bottom and 75 as

the ceiling. If the number 5 is entered as data, it should

be converted to: 5 -> 1/Low + 0/High. Likewise, 80

would be converted to: 80 -> 0/Low + 1/High.

The user should be able to arbitrarily Set these

boundaries as Well _ as change them between applications.

Set the two threshold values (one for the certain rules, one for

the possible rules).

1) The user should be able to interactively change the

threshold to compare the changes, i.e. the rules the

changes affect.

2) Software should produce an error message for a threshold

value greater than 1 or less than 0.
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4.1.2 Functions and Calculations

The software should be able to:

A. Convert the inputed data into the "fuzzy sets" that are used as
the basis for all fuctions and calculations.

B. Measure the degree to which a set, A, is included in another, B:

{I(AnB)}. This calculation is used to determine the certain

rules.

C. Measure the degree to which a set, A, intersects another, B:

{J(A#B)}. This calculation is used to determine the possible
rules.

D. Compare the values of I(AnB), for various A's and B's, with the

threshold value for certain rules and disregard all values of

I(AnB) which fall below the threshold. Similarly, all values of

J(A#B) should be compared to the threshold value for possible

rules with all values of J(A#B) below the threshold being

disregarded.

E. From the values of I(AnB) and J(A#B) that are at or above the

threshold, the software should extract the rules (to keep).

For the certain rules, the "prime" rules should be extracted.
For the possible rules, the "combination" rules should be

extracted. For example, if the rules are:

(1) If tumor is A and B then C is .6.

(2) If tumor is A then C is .6.

{3) If tumor is B then C is .6.

For the certain rules, we extract (2)and (3). For the possible

rules, we extract (1).

F. Convert the inclusion {I(AnB)} and intersection {J(A#B)} symbols

to english statements. The purpose of this is to help the user

to better distinguish the output.
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4.1.3 Output

The software should produce:

Aw A complete listing of all rules (certain and possible) in english
for "

1) Before comparison to the threshold value, and

2) After the comparison to the threshold value.

B. The two threshold values the user has assigned.

C. The final list of extracted certain and possible rules in english.
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CONCLUSION B

i

The decision-making process can easily be simulated by computers

if no uncertainty is present. Unfortunately, this is not always the case.

Uncertainty may arise due to a number of reasons. It may be due to

ambiguity of terms, the skepticism of rules, or by missing or erroneous

data. Therefore, methods other than classical logic must be developed to

counteract this.

This paper has examined the methods of Dempster, Shafer, Rough

sets, and Fuzzy sets in an attempt to achieve the optimal solution. The

solution offered here is an integration of these methods. The decision-

maker may enter in conditional attributes and decisional attributes.

These values are converted into fuzzy set form.

upper approximations of belief are established.

From here, lower and

These approximations

generate the rules, certain and possible, which will be used as the basis

of the decision-making process.

This entire process is simulated in the program: The Culas-Worm

Decision-Maker. In this program, the user, or decision-maker, is first

given the choices of examining a sample running of the program or
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entering in their own data. The data may be entered in fuzzy set form (i.e.

inclusive values between 0 and 1) or real form (any real number). From

there, the lower and upper approximations and the certain and possible

rules are generated. A threshold value may be entered to provide a more

"consistent" view of these rules. The rules generated through this process

form the foundation for which the user makes their decisions.

This program should satisfy the immediate objective of the research

and implementation of the previously referenced methods. In addition, it

should provide a foundation for the ultimate long-range goal: the

designing of a decision-making process which neutralizes uncertainty.
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Appendix A

Program:

The Culas-Worm Decision-Maker
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Program Extract_Fuzzy_Rules(Input,Output);

PROGRAM FOR PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR CS 4395

Programmers : Donald Culas

Jeff Worm

This program simulate the ideas set forth in

Dr. Andre de Korvin's paper, "Extracting Fuzzy Rules

under uncertainty and Measuring Definibility using

Rough Sets". The program is designed to combine the

methods of rough sets and fuzzy sets to measure

uncertainty. Fuzzy rules are extracted to provide

the user a foundation from which they may formulate

a decision.

const

max cases = i00;

type

str = string [i0];

fuzzy_array = array[l..max_cases] of real;

struct = record

attl : str;

att2 : str;

value attl : real;

value att2 : real;
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end;

cond struct = record

consider : str;

firattr : str;

secattr : str;

firattr 1 : str;

firattr 2 : str;

secattr 1 : str;

secattr 2 : str;

end;

=

w

r_
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m_

w

w

m_
m

dec struct = record

consider : str;

firattr : str;

secattr : str;

end;

value struct = record

kind 1 : str;

kind 2 : str;

dec kind : str;

value : real;

attr : integer;

tag : integer;

end;

case struct = record

condition 1 : struct;

condition 2 : struct;

decision : struct;

end;

info = array[l..max_cases] of case_struct;

value_array = array [1..9] of value struct;

var

cases : info;

thresh : real;

m_ch,sit_ch,d_ch,val ch,see ch : char;

no of cases,count : Ynteger7

read data : boolean;

condition : cond struct;

decision : dec_struct;

condl_attl_arr,condl_a££2_arr,cond2_attl_arr,cond2_att2_arr

fuzzy_array;

dec_attl_arr,dec_att2_arr, inter_array : fuzzy_array;

decl_sub,dec2_sub,decl_inter,dec2_inter : value_array;

i T



{************* This procedure initializes the strings.

*****************************************************************

procedure initialize(vat con : cond struct;

vat dec : dec_struct);

PROCEDURE INITIALIZE

var

blank : string [i0];

begin
blank := ' ''

con.consider := blank;

con.firattr := blank;

con.secattr := blank;

con.firattr 1 := blank;

con.firattr 2 := blank;
con.secattr 1 := blank;

con.secattr 2 := blank;

dec.consider := blank;

dec.firattr := blank;

dec.secattr := blank;

end;

{ INITIALIZE )

( INITIALIZE )

L_

{ ****************************************************************

****}

{ ****************** PROCEDURE READ SITUATION

********************** )

( ****

****)

(**** This procedure reads in the conditional and decisional

****)

{**** attributes that the user enters.

****)

( ****************************************************************

****)

procedure read_situation(var con : cond_struct; _ _

var dec : dec_struct);
begin ( READ SITUATION )

writeln;

writeln;

writeln;

writeln( 'Please enter the attribute under consideration ');

write(' (eg.tumor, weather, etc... ) : ' );

readln (con. consider) ;
writeln;

write('Pl@@se enter the decision attribute (eg. disease, factory,
etc...) : ');

readln (dec. consider) ;

writeln;
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writeln;

writeln('Please enter the two attributes of ',con.consider,' '

'we will be looking at');

write('First attribute of ',con.consider, ' : ') ;

readln (con. firattr) ;

write('Second attribute of ',con.consider,' : ');

readln(con.secattr);

writeln;

writeln;

writeln('Please enter two attributes for ',con.firattr);

write('First attribute for ',con.firattr,' : ');

readln(con.firattr I);

write('Second attribute for ',con.firattr,' : ');

readln(con.firattr_2);

writeln;

writeln;

writeln('Please enter two attributes for ',con.secattr);

write('First attribute for ',con.secattr,' : ');

readln(con.secattr_l);

write('Second attribute for ',con.secattr,' : ');

readln(con.secattr 2);

writeln;

writeln;

writeln('Please enter two attributes for ',dec.consider);

write('First attribute for ',dec.consider,' : ');

readln(dec.firattr);

write('Second attribute for ',dec.consider,' : ') ;

readln(dec.secattr);

end; { READ SITUATION )

*******************************************************************

(**************** PROCEDURE SET FUZZY VALUE *********************

{**** ****)

(**** This procedure reads in real data (i.e. 20, 58, 265) ****)

{**** and converts it into fuzzy values - values between 0 ****)

{**** and 1 (i.e. 0.7, 0.3, 0.28). ****)

*******************************************************************

procedure set_fuzzy_value(vat val,max,min, first val,sec_val :

real);

begin

if (val > max ) then

begin

first val := i;

sec val := 0;

end

else

if ( val < min ) then

begin

sec val := i;

first val := 0;

end

( SET FUZZY VALUE )



else
begin

first_val := (val - min)/(max-min) ;
sec_val := (max- val)/(max-min);

end;
end; ( SET FUZZY VALUE )

{ ****************************************************************

****}

{ ************************* READ REAL

****************************** )

(****

****}

(**** This procedure reads in the real (not fuzzy) values and

****}

{**** requires the user to establish high and low values for

****)

{**** the conditional and decisional attributes.

{ ****************************************************************

**** )

procedure read real ( con : cond struct;

- dec : dec3£rUct;

vat case arr : info;

varn : integer) ;
var

firattr_l, firattr_2, secattr_l, secattr 2, dec_l, dec_2, value :

real ;

i : integer;

ch : char;

begin ( READ REAL )

ch := 'y' ;

i := I_ _

writeln;

write( 'Please enter a number you associate with definitely

' con firattr i, '' ') ; .... -- -_

readln (firattr_i) ;

write('Please enter a number you associate with definitely

fi '- ')' con. rattr 2, . ; _ ....¢ __ _

readln (firattr_2 ) ; ....

writeln;

write( 'Please enter a number you associate with definitely

' con.secat£r i, '' ') ;

readln (secattr_l) ;

write('Please enter a number you associate with definitely

............. ,, ');' con.secattr 2,I •

readln (secattr_2) ;
writeln;

write( 'Please enter a number you associate with definitely

',dec.firattr, '." ') ;

readln (dec_l) ;

write('Please enter a number you associate with definitely

',dec.secattr, ': ') ;
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readln(dec_2) ;

WHILE ( (ch = 'y') or (ch = 'Y') ) do

begin

case_arr[i].condition l.attl := con.firattr i;

case_arr[i].condition_l.att2 := con.firattr_2;

case_arr[i].condition 2.attl := con.secattr_l;

case_arr[i].condition 2.att2 := con.secattr 2;

case_arr[i].decision.attl := dec.firattr7

case arr[i].decision.att2 := dec.secattr;

write('Please enter a value for ',con.firattr, ' : ');

readln(value);

set_fuzzy_value(value,firattr_l,firattr_2,case_arr[i].condition_l

.value attl,case arr[i].condition_l.value_att2);

write('Please enter a value for ',con.secattr, ' .. ');

readln (value) ;

set,fuzzy_value(value,secattr_l,secattr_2,case_arr[i].condition_2

.value attl,case arr[i].condition 2.value_att2);
- _ : ');write('Please enter a value for ',dec.consider,

readln(value);

set_fuzzy_value(value,dec_l,dec_2,case_arr[i].decision.value attl

,case_arr[i].decision.value_att2);

writeln;

i := i + i;

REPEAT { Makes user enter 'Y' or 'S' )

writeln;

write('Please enter [y] to input more data or [s] to stop :

');

readln (ch) ;

UNTIL ( (ch = 's') or (ch = 'S') or (ch = 'y') or (ch = 'Y') );

end;

ch := i ,.
f

n := i-l;

end; ( READ REAL )

(*************** PROCEDURE CREATE CONDITION_I FUZZY SETS

***************)

{**** This procedure creates the fuzzy sets for the first

condition. ****}

*****************************************************************

procedure create_condl_fuzzy_sets( con : info;

n : integer;

var new_arr_l : fuzzy_array;

var new_arr_2 : fuzzy_array );

vat

i : integer;



begin ( create_condl_fuzzy sets )
for i := 1 to n do

begin
new_arr_l[i] := con[i].condition_l.value attl;
new_arr_2[i] := con[i].condition_l.value_att2;

end ; _ _! _,=
end; { create_condl_fuzzy_sets )

W
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*****************************************************************

(****************** CREATE CONDITION_2 FUZZY SETS

************************

****)

{**** This procedure creates the fuzzy sets for the second

condition. ****)

*****************************************************************

procedure create_cond2_fuzzy_sets( con : info;
n : integer;

var

i : integer;

begin
for i := 1 to n do

var new_arr_l : fuzzy_array;

var new_arr_2 : fuzzy_array);

( CREATE COND_2 FUZZY SETS )

begin

new_arr l[i] := con[i].condition_2.value_attl;

new_arr_2[i] := con[i].condition_2.value_att2;

end;

end; ( CREATE COND_2 FUZZY SETS }

*****************************************************************

**********)

(************** PROCEDURE CREATE DECISION FUZZY SETS

***)

{*** This procedure creates the fuzzy sets of the decisional

attributes ***)

*****************************************************************

**********)

procedure create_decision_fuzzy_sets(con
n

: info;

: integer;
vat new arr 1 :

fuzzy_array;
var new arr 2 :

fuzzy_array);

var

i : integer;

begin { CREATE DECISION FUZZY SETS
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for i := 1 to n do
begin

new_arr l[i] := con[i].decision.value attl;
new_arr_2[i] := con[i].decision.value_att2;

end;
end; { CREATEDECISION FUZZY SETS
)
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procedure init(var arr

vat

i : integer;

blank : string [i0];

begin
blank := '

for i := 1 to 9 do

begin

arr[i].kind 1

arr[i].kind_2

arr[i].tag :=

end;

: value array) ;

| •

F

( PROCEDURE INIT )

:= blank;

:= blank;

-i;

end; ( PROCEDURE INIT }

*******}

procedure set_cond ( con : cond_struct;

var arrl : value_array);

begin { SET CONDITION

arrl[l].kind_l := con.firattr_l;

arrl[l].attr := 2;

arrl[2].kind_l := con.firattr_2;

arrl[2].attr := 2;

arrl[3].kind_l := con.secattr_l;

w



arrl[3].attr := 2;

arrl[4].kind 1 := con.secattr 2;

arrl[4].attr := 2;

arrl[5].kind 1 := con.firattr I;

arrl[5].kind 2 := con.secattr i;

arrl[5].attr := 3;

arrl[6].kind 1 := con.firattr_l;

arrl[6].kind 2 := con.secattr 2;
arrl[6].attr := 3;

arrl[7].kind 1 := con.firattr 2;

arrl[7].kind_2 := con.secattr I;

arrl[7].attr := 3;

arrl[8].kind 1 := con.firattr 2;
w

arrl[8].kind_2 := con.secattr 2;

arrl[8].attr := 3;

end;
{ SET CONDITION )

*******}

procedure set.decl(dec

var
vat

i : integer;

begin

for i := 1 to 8 do

arr[i].dec_kind :=
end;

dec struct;

arr : value_array);

dec.firattr;

{ SET DECISION_I )

( SET DECISION_I }

var

U

W

S

I

i

m

m

i

D

E

m

_l
m

E
g

!
m

g



w

i : integer;

begin { SET DECISION_2 }
for i := 1 to 8 do

arr[i].dec_kind := dec.secattr;

end; { SET DECISION_2 }
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********}

**************************** FUNCTION SUB

******************************

*****

****)

{**** This function evaluates the values of I (A c B). This value

****) ....

(**** is the degree to which A is included in B and is used to

****}

(**** generate the certain rules.

****)

********)

function sub ( j : integer;

arrl, arr2 : fuzzy_array) : real;

: fuzzy_array;
: real;

: integer;

var

temp
min

i

begin

for i := 1 to j do

begin

, temp[i] :=

if (arr2 [i]

temp[i]
end;

min := temp[l];

for i := 2 to j do
begin

if ( temp[i]
min :=

end;

sub := min;

end; ...... _

1 - arrl[i];
> temp[i] )

:= arr2[i];

then

< min ) then

temp[i];

{ FUNCTION SUB )

{ FUNCTION SUB )



****)

{**** is the degree to which A intersects B and is used to

{**** generate the possible rules.

****}

function num( j : integer;

arrl, arr2 : fuzzy_array) : real;
var

temp : fuzzy_array;

i : integer;
max : real;

begin

for i := 1 to j do

begin

if ( arrl[i] <= arr2[i] ) th_n

temp[i] := arrl[i]
else

temp[i] := arr2[i]

end;

max := temp[l];

for i := 2 to j do

begin

if ( temp[i] > max ) then

max := temp[i];

end;

num := max;

end;

{ FUNCTION NUM )

{ FUNCTION NUM }
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( ****************************************************************

****)

( *************.**** PROCEDURE INTERMEDIATE

************************* }

( ****

****)

{**** This procedure sets the values in the intermediate array

****)

(**** for the values of I(A c B) and J(A # B).

****) .....

( ****************************************************************

procedure inter ( j : integer;

arrl, art2 : fuzzy_array;

var temp_array : fuzzy_array) ;

var

i : integer;

begin { INTER )

for i := 1 to j do

begin

if ( arrl[i] <= arr2[i] ) then
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temp_array[i] := arrl[i]
else

temp_array[i] := arr2[i]
end;

end; { INTER )

F_
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This procedure assigns the values to the corresponding terms

of I(A c B). It calls on the Function SUB.

: integer;

colattl,colatt2,co2attl : fuzzy_array;

,decatt)

,decatt)

,decatt)

:= sub(n,temp_arr,decatt)

(

: fuzzy_array;

value_array);

*******}

procedure value_sub( n

co2att2,decatt

var new art :
m

vat

temp arr : fuzzy_array;

begin { VALUE SUB )

new_arr[l].value := sub(n,colattl,decatt);

new_arr[2].value := sub(n,colatt2,decatt);

new_arr[3].value := sub(n,co2attl,decatt);

new_arr[4].value := sub(n,co2att2,decatt);

inter(n,colattl,co2attl,temp_arr);

new_arr[5].value := sub(n,temp_arr

inter(n,colattl,c02att2,temp arr);

new_arr[6].value := sub(n,temp_arr

inter(n,colatt2,co2attl,temp_arr);

new arr[7].value := sub(n,temp_arr

inter(n,colatt2,co2att2,temp_arr);

new_arr[8].value
end; VALUE SUB }



var
i : integer;

begin
for i := 1 to

arrl[i].tag
end;

8 do
:= -i;

( INITIALIZE TAG )

( INITIALIZE TAG }

EE

m
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assigns

It calls on the Function NUM.

the values to the corresponding terms

value inter(n : integer;

colattl,colatt2,co2attl : fuzzy_array;

co2att2,decatt : fuzzy_array;

var new_arr : value_array);

: fuz zy_array;
( VALUE INTER )

new_arr[l].value := num(n,colattl,decatt);

new_arr[2].value := num(n,colatt2,decatt);

new_arr[3].value := num(n,co2attl,decatt);

new_arr[4].value := num(n,co2att2,decatt);

inter(n,colattl,co2attl,temp_array);

new_arr[5].value := num(n,temp_array,decatt);

inter(n,colattl,co2att2,temp_array);

new arr[6].value := num(n,temp_array,decatt);

inter(n,colatt2,co2attl,temp array);

new arr[7].value := num(n,temp_array,decatt);

inter(n,colatt2,co2att2,temp_array);

new arr[8].value := num(n,temp_array,decatt);

end; -- ( VALUE INTER }

var

temp_array

begin
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procedure printall_head;

begin

writeln;

writeln;

writeln('

writeln('

writeln('

end;

These are all the rules ');

......... ,);

');

procedure thresh_head ( tval : real);

begin

writeln;

writeln;

writeln(' These are the rules after applying the threshold

value of ',tval:2:l);

w r i t e 1 n ( '
D_

,);
w r i t e 1 n ( '

I --

,);
end ;

procedure certain_head;

begin

writeln;

writeln(' The following are the certain rules ');

writeln(' ');
writeln;

end;

procedure possible_head;

begin

writeln(' The following are the possible rules ');

writeln(' ');

writeln;

end;

********}

*********************** PROCEDURE KIND RULES

***************************

(****

****)

{**** This procedure asks the user what kind or rules they will

use ****)

*****************************************************************

********)

procedure kind_rules(var ch : char);

begin ( KIND RULES }

writeln;

writeln;



I

ch • _ | | •• I

REPEAT

writeln( 'What kind of rules would you like to see ?');

writeln( ' ') ;

writeln(' Please enter [a] for all the rules : ') ;

writeln( ' or ') ;

write(' Please enter [e] for the extracted rules: ') ;

readln (ch) ;

UNTIL ( (ch = 'a') or (ch = 'A') or (ch = 'e') or (ch = 'E'));
writeln;

writein;

writeln;

end; ( KIND RULES )
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********)

********************* PROCEDURE CHECK THRESHOLD

************************

(****

****)

{**** This procedure asks the user if they want to set a threshold

****)

***** value for the certain or possible rules•

****)

*****************************************************************

********)

procedure check_thresh( var ch : char;

c_or_p : char);

begin

ch := w i;

writeln;

writeln;

write('Do you want to see only the ');

if (c or_p = 'c') then

write('certain ')

else

write('possible ');

writeln ('rules above ');

writeln(' a threshold value? ');

writeln;

REPEAT

writeln;

writeln;

write('Please enter [y] to see only the ');

if (c_or_p = 'c') then

write('certain ')
else

write('possible ');

writeln('rules which ');

writeln('are above a threshold value ');

writeln(' or ');

write('Enter [n] to see all the ');

{ CHECK THRESHOLD )
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if (c_or_p = 'c') then

write( 'certain ')

else

write ( 'possible ') ;

write(' rules : ') ;

readln (ch) ;

UNTIL (( ch = 'y') or ( ch =
end;

'Y') or (ch = 'n') or (ch = 'N'));

{ CHECK THRESHOLD )

w

L •

********)

{****************** PROCEDURE GET THRESHOLD VALUE

(**** This procedure reads the threshold value if one is entered.

procedure get_tval( var num: real;

var t_kind : char);

begin

write('Please enter

if (t_kind = 'c')

write( 'certain ')
else

write('possible ');

write('rules : ');

readln(num);

end;

the threshold value

then

{ GET T VAL }

for the 7);

{ GET T VAL }

w

v

w

procedure extract_head;

begin

writeln;

writeln;

writeln(' These are

writeln(' ...........

writeln('
writeln;

end;

the extracted rules ');

• ,);
');

m



procedure certain_extract_head;

begin

writeln(' ');

writeln(' ');

writeln(' These are the extracted certain rules ');

writeln(' .................... ');
writeln;

end;

c or_p : cha_; ....

alpha : real;
kind : char;

arr_size : integer);
var

i : integer;

print : boolean;

blank : string [i0];

begin

blank := ' ''
e

for i := 1 to arr size do

begin

arrl[i].dec kind);

( PRINT ENGLISH )

print := false;

if ( ( kind = 'a') or ( kind = 'A') ) then

begin- -

if (arrl[i].value >= alpha) then

print :9 true

end

else

if ( (kind = 'e') or (kind = 'E') ) then

if ( (arrl[i].value >= alpha ) and ( arrl[i].tag _ i) )
then

print := true;

if print then -_- :___: r_.

begin

write('If the ',condition.consider,' is

' arrl[i] kind I);

if ( arri[i].kind_2 <> blank ) t_en

write (' and ',arrl[i].kind_2);

write(' then ' decision.consider,' '
r l

if ( ( c_or_p = 'c') or ( c_or_p = 'C') ) then
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end;

writeln;

writeln;

writeln;

writeln;

end;

else

end;

write( ' is present ')

write ( ' is possible ');

writeln(arrl[i].value:2:l);

writeln;

{ PRINT ENGLISH }

(*

{*

PROCEDURE POSSIBLE EXTRACT HEADER

*** This procedure generates the heading for extracted rules.

procedure

begin

)
writeln('

writeln('

writeln('

writeln('

writeln;

end;

RULES }

possible_extract_head;

,);
');
These

{ POSSIBLE EXTRACT HEAD

are the extracted possible rules ');

');

{ POSSIBLE EXTRACT

m

w

{ ******************** PROCEDURE EXTRACT RULES

************************* }

( ****

(**** This procedure extracts the rules. First, all rules with

(**** unique I(AcB) and J(A#B) values are kept. Secondly, if more

(**** than one rule has identical I values, the "smaller" in terms

(**** of attributes is kept. Conversely, the "larger" rules are

(**** kept when dealing with identical J values.

****}

v



********)

procedure extract_rules(var arrl : value_array;

c_or_p : char;

thresh_value : real);

var

n,i,j : integer;

begin ( EXTRACT RULES )

n := 9;

for i := 1 to n-i do

begin

if ( arrl[i].value >= thresh_value ) then

begin

for j := i + 1 to n do

begin

if ( arrl[i].attr <> arrl[j].attr ) then

begin

if ( c_or p = 'c' ) then

begin

if ((( arrl[i].kind_l

arrl[j].kind_l ) or

arrl[j].kind_2 )) and

) then

or

arrl[j].kind_2)) and

)then

end;

end;

end;

( arrl[i] .kind_l

( arrl [i] .value = arrl [j ] .value)

begin

if ( arrl[i].tag = i) then

arrl[j].tag := 0;

end;

if ( arrl[i].tag = -i ) then

arrl[i].tag := i;

end

else

begin

if (((arrl[i].kind_l=arrl[j].kind_l)

(arrl[i] . kind_l

(arrl[i).value = arrl[j].value)

arrl[i].tag . 0;

if ( arrl[j].tag = -I ) then

arrl[j].tag := I;

end;

end

else if (arrl[i].tag = -i) then

arrl[i].tag := i;

end;

{ EXTRACT RULES }
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*****************************************************************

*******)

*********************** PROCEDURE PRINT RULES

{****

****)

{**** This procedure calls on the appropriate modules and prints

****}

{**** the headers and the output --> rules.

****}

*******)

procedure print_rules( dsubl_arr,dsub2 arr : value_array;

dinterl_arr,dinter2_arr : value_array);

var

kind : char;

c_or_p : char;

t val : real;

ch : char;

size : integer;

begin ( PRINT RULES }

size := 8;

kind rules(kind);

if (_ kind <> 'q') or ( kind <> 'Q') ) then

begin

if ( ( kind = 'a') or (kind = 'A')) then

begin
t val := 0.0;

c_or_p := 'c';

check_thresh(ch,c_or_p);

if ( (ch = 'y') or (ch = 'Y') ) then

begin

get_tval(t_val,c or_p);

thresh_head(t_val);

end;

printall_head;

certain head;

print_english(decl sub,c or 9,t_val,kind,size);

print_english(dec2_sub,c or p,t_val,kind,size);

c_or_p := 'p';
t val := 0.0;

check_thresh(ch,c_or_p);

if ( (ch = 'y') or (ch = 'Y') ) then

begin

get_tval(t_val,c or 9);

thresh_head(t_val);

end;

possible_head;

print_english(decl_inter,c_or_p,t_val,kind,size);

print_english(dec2_inter,c or 9,t_val,kind,size);

end

else

begin
ch := ' ';



t val := 0.0;
c_or_p := 'c';
check thresh(ch,c_or_p);

if ( (ch -= 'y') or (ch = 'Y') ) then

begin

get_tval(t_val,c_or_p);

thresh_head(t_val);

end;

extract_rules(decl_sub,c_or_p,t_val);

extract head;
certain extract head;

print_english(decl_sub,c_or_p,t_val,kind,size);

extract rules(dec2_sub,c_or_p,t_val);

print_english(dec2_sub,c_or_p,t_val,kind,size);

t val := 0.0;

c_or_p := 'p';

check_thresh(ch,c_or_p);

if ( (ch = 'y') or (ch = 'Y') ) then

begin

get_tval(t_val,c_or_p);

thresh_head(t_vai);

end;

extract_rules(decl_inter,c_or P,t_val);

possible_extract_head;

print_english(decl_inter,c_or_p,t_val,kind,size);

extract rules(dec2_inter,c_or_p,t_val);

print_english(dec2_inter,c, or_p,t_val,kind,size);

end;

end;

end; { PRINT RULES )

{ ****************************************************************

( ************************ PROCEDURE ASSIGN VALUES

********************** )

{**** _ _ _ ....

(**** This procedure assigns the values for the sample run.

(****************************************************************

*******_)

Procedure assign_value( vat arrl : info );
{ ASSIGN VALUES }begin

arrl [ 1 ] . condition_l _.value_attl : = 0 . 3 ;

arrl[l].condition_l.value att2 := 0.8;

arrl [ I ] . condition_2 . value_att 1 : = 0 . 2 ;

arrl[l].condition 2.vaiue at£2 := 0.9;

arrl [ _] . decqsion, value_attl : = 0 . 3 ;

arrl[l].decision.value att2 := 0.6;

arrl [ 2 ] . condition_l.value_attl : = 0. 4 ;
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arrl[2].condition_l.value art2 := 0.7;

arrl [ 2 ] . condition 2 . value attl

arrl[2].condition 2.value att2 :=0.7;

arrl [ 2 ] . declsion, value attl

arrl[2].decision.value_att2 := 0_.5;

:= 0.4;

:= 0.8;

arrl [ 3 ] . condition_l.value_attl

arrl[3].condition_l.value art2 := 0.4;

arrl [ 3 ] . condition_2 .value_attl

arrl[3].condition_2.value_att2 := 0.7;

arrl [ 3 ] . decision, value_att 1

arrl[3].decision.value_att2 := 0.9;

:= 0.7;

:= 0.6;

:= 0.5;

arrl [ 4 ] . condition_l . value_attl

arrl[4].condition_l.value_att2 := 0.5;

arrl [ 4 ] . condition_2 . value_att 1

arrl[4].condition_2.value att2 := 0.8;

arrl [ 4 ] . decqsion . value_att 1

arrl[4].decision.value_att2 := 0.3;

:= 0.8;

:= 0.3;

:= 0.7;

arrl [ 5] . condition_l.value_attl

arrl[5].condition_l.value att2 := 0.7;

arrl [ 5] . condition 2 .value attl

arrl[5].condition_2.value att2 := 0.5;

arrl [ 5 ] . decision, vaiue_att 1

arrl[5].decision.value_att2 := 0.2;

:= 0.2;

:= 0.2;

:-- 0.4;

arrl [ 6 ] . condition_l . value_attl

arrl[6].condition l.value att2 := 0.2;

arrl [ 6 ] . condition_2 .value_attl

arrl[6].condition_2.value att2 := 0.2;

arrl [ 6 ] . decision . value_att 1

arrl[6].decision.value_att2 := 0.8;

:= 0.9;

:= 0.8;

:= 0.7;

arrl [7] . condition_l.value

arrl[7].condition_l.value_att2 := 0.6;

arrl [7 ] . conditlon_2 .value

arrl[7].condition_2.value att2 := 0.i;
arrl [ 7 ] . decqsion . value

arrl[7].decision.value_att2 := 0.5;
end;

attl : = 0 . 3 ;

attl : = 0 . 7 ;

attl := 0 . 4 ;

( ASSIGN VALUES )

L

=

***********)

************************** PROCEDURE EXAMPLE

(****

****)

***** This procedure assigns the conditional and decisional

attributes ****}

(**** for the sample run.



_ info);
var

i : integer;

begin { EXAMPLE }
initialize(con,dec);
con.consider := 'tumor';
dec consider "= 'disease '•

con.firattr := 'size';

con.secattr := 'color';

con.firattr 1 := 'large';

con.firattr_2 := 'small';
con.secattr 1 := 'red';

con.secattr 2 := 'blue';

dec.firattr := 'Da';

dec.secattr := 'Db';
for i := 1 to 8 do

begin

case arr[i].condition_l.attl := con.firattr_l;

case_arr[i].condition_l.att2 := con.firattr_2;
case_arr[i].condition 2.attl := con.secattr i;

case_arr[i].condition 2.att2 := con.secattr 2;
case_arr[i].decision.attl := dec.firahtr7

case_arr[i].decision.att2 := dec.secattr;
end;

assign_value( case_arr );

end; { EXAMPLE }

procedure example(var con : cond_struct;
var dec : dec struct;
var case arr :
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writeln;

writeln;

writeln;

writeln('

writeln('

writeln(' ');

writeln('

writeln('

writeln('

writeln(' ');

writeln(' ');

write('Please

readln(sel);

UNTIL ( ( sel =

end;

** WELCOME TO THE CULAS-WORM DECISION MAKER

Here are the choices ') ;

********************** w) ;

I) Show a sample run of this program ');

2) Run the program using your data ');

3) Quit ');

enter your choice i, 2, or 3 : ') ;

'I,) or (sel = '2') or (sei = '3')

{ MAIN )

);

-Jw

=

*********)

*********************** PROCEDURE ASK SIT

(****

****}

{**** This procedure asks the user if they would like to use the

****}

(**** data for a different run.

****)

*********}

procedure ask_sit(var choice : char;

var cont : in£eger) ;

begin ( ASK SIT }

choice := ' ';

REPEAT

writeln('Do you want to use the same attributes as previously

used ');

write( 'Please enter [y] or [n] ');

readln(choice);

UNTIL ( (choice = 'y')or(choice = 'Y') or ( choice = 'n') or

(choice = 'N') ) ;

end; { ASK SIT }



******)

(*********************

**********************)

(****

(****

PROCEDURE ASK DATA KIND

This procedure asks the user what type of data they will be

using - real or fuzzy.

*****************************************************************

******)

procedure ask_data_kind( var ch : char);

begin ( ASK DATA KIND }
ch "= ' '.

• B

REPEAT

writeln;

writeln;

writeln ('What kind of data do you want to use ?');
writeln;

writeln ('Real kind : eg. ( 20 30 92 ) ');
writeln (' or ');

writeln ('Fuzzy kind : (values between 0 and 1 : eg.(.l .4
.7) ') ;

writeln;

write('Please enter [r] for real or [f] for fuzzy : ');

readln(ch);

UNTIL( (ch = 'r') or (ch='R')or(ch='f')or(ch='F'));

end; ( ASK DATA KIND )
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*****************************************************************

*********************** PROCEDURE READ

**************************

****}

{**** This procedure reads in the fuzzy values•
****}

procedure read_fuzzy(con : cond struct;
w

dec : dec_struct;

var case_arr : info;

var n : integer) ;
vat

i : integer;

ch : char;

begin

ch := 'y';! _ _;}_
i := I;

while ( (ch = 'y') or (ch = 'Y') ) do

begin

case_arr[i].condition_l.attl := con.firattr i;

( READ FUZZY )
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,);

);

case_arr[i].condition_l.att2 := con.firattr_2;

case_arr[i].condition_2.attl := con.secattr_l;

case_arr[i].condition_2.att2 := con.secattr_2;

case_arr[i].decision.attl := dec.firattr;

case_arr[i].decision.att2 := dec.secattr;

write('Please enter a value for ',con.firattr_l, ' : ');

readln(case_arr[i].condition l.value attl);
_ _ , : ');write('Please enter a value for ',con.firattr_2,

readln(case_arr[i].condition l.value_att2);

write('Please enter a value for ',con.secattr_l, ' : ');

readln(case_arr[i].condition_2.value_attl) ;

write('Please enter a value for ',con.secattr_2, ' : ');

readln(case_arr[i].condition_2.value_att2);

write('Please enter a value for ',dec.firattr, ' : ');

readln(case_arr[i].decision.value_attl);

write('Please enter a value for ',dec.secattr, ' : ');

readln(case_arr[i].decision.value_att2);

i := i + i;

REPEAT

writeln;

write('Please enter [y] to input more data or [s] to stop :

readln(ch) ;

UNTIL ( (ch = 's') or (ch = 'S') or (ch ='y') or (ch = 'Y')

end;

n := i-l;

ch := ' l;

end; { READ FUZZY }

{****************************************************************

******** }

( ************************ PROCEDURE ASK VALUE

************************* )

{****

****}

{**** This procedure asks the user if they want to use the same

****}

{**** values as before for another run.

****}

{ ****************************************************************

******** }

procedure ask_value (var ask_val : char);

begin { ASK VALUE }

repeat
writeln ;

writeln('Do you want to use the same values as previously used

');
write('Please enter [y] for yes; or [n] for no : ');

readln(ask_val) ;

until ( (ask_val = 'y') or (ask_val = 'Y') or (ask_val = 'n')

or

w



end;

(ask_val = 'N') ) ;
( ASK VALUE }
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*****************************************************************

*******)

************************** PROCEDURE ASK SEE

(****

****)

(**** This procedure asks the user if they want to see the data

****) ........

***** that is being used.

****)

*******)

procedure ask_see( var ch : char);

begin ( ASK SEE )

repeat
writeln;

writeln;

writeln('Would you like to see the data being used :

write('Please enter [y] or [n] : ');

);

,);

readln (ch) ;

until ( ( ch = 'y') or (ch = 'Y') or (ch = 'n') or (ch = 'N')

end; ( ASK SEE )

*****************************************************************

******)

************************ PROCEDURE PRINT

************************

(****

****)

{**** This is the procedure to print the data.

****)

*****************************************************************

******)

procedure print_dat(arrl : info;
con : cond struct;

dec : dec struct;

n : integer );

var

i : integer;

begin ( PRINT DATA )

writeln(' Data being used ') ;

writeln;

writeln; "

writeln(' The attributes under consideration are ',con.consider,

' and ' dec consider );
I

writeln;

DATA
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writeln;

for i := 1 to n do

begin

writeln(arrl[i] .condition_l.attl: i0,

:2,arrl[i].condition_l.value_attl:2:l,
I

' ' : 10,arrl[i] .condition_l.att2: i0, -

:2,arrl[i].condition l.value att2:2:i);

writeln_arrl[{] .condition_2.attl: i0, ' =

:2,arrl[i].condition 2.value attl:2:l,
- [q , _' ' : 10,arrl ] .condition_2.att2 : i0, -

:2,arrl[i].condition_2.value_att2:2:l) ;

writeln (arrl [ i] . decision, attl : I0, ' =

:2,arrl[i].decision.value_attl:2:l,

, , : i0, arrl [ i] . decision, att2 : i0, ' =

:2,arrl[i].decision.value_att2:2:l);

writeln;

writeln;

end;

end; { PRINT DATA )
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**********)

**********)

BEGIN ( MAIN )

initialize(condition,decision);

coun£ :_ 0; ..............................
m ch := w4';

repeat
read data :=

menu (m_ch) ;

if ( (m_ch =

begin
if

false;

'i') or (m_ch = '2') ) then

( m_ch = 'i') then

begin
no of cases := 7;

example(condition,decision,cases);

ask see(see_ch);

if _ ( see_ch = 'y') or (see_ch = ,y,) ) then



print_dat(cases,condition,decision,no_of_cases);
end

else if (m_ch = '2') then

begin

if ( count = 0) then

begin

read data := true;

count := count + i;

initialize(condition,decision);

read_situation(condition,decision);

end

else

begin

ask_sit(sit_ch,count);

if ( (sit_ch = 'n') or (sit_ch = 'N') ) then

begin
read data := true;

initTalize(condition,decision);

read situation(condition,decision)

end

else

begin

ask_value(val_ch);

if ( (val_ch = 'n') or (val_ch = 'N') ) then

read data := true;

end;

end;

if read data then

begin

ask data kind(d_ch);

if _ (d_c--h = 'r') or (d_ch = 'R') ) then

read real(condition,decision,cases,no_of_cases)

else

read_fuzzy(condition,decision,cases,no_of_cases);

ask see(see_oh);

if _ ( see ch = 'y') or (see ch = 'Y') ) then

print_dat(cases,condition,decision,no_of_cases);

end;

end;

create condl_fuzzy_sets(cases,no of cases,condl_attl_arr,condl_at

t2_arr_;

create cond2_fuzzy_sets(cases,no of cases,cond2_attl_arr,cond2_at

t2_arr);

create decision_fuzzy_sets (cases, no of cases, dec_attl_arr, dec_att

2_err) ;

init (decl_sub) ;

init(dec2 sub) ;

ini£ (decl--inter) ;

init (dec2_inter) ;

set cond (condition, decl_sub) ;
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set_cond(condition,dec2_sub);

set cond(condition,decl_inter);

set_cond(condition,dec2_inter);

set_decl(decision,decl_sub);

set_decl(decision,decl_inter);

set_dec2(decision,dec2_sub);

set dec2(decision,dec2_inter);

value_sub(no of cases,condl_attl_arr,condl_att2_arr,cond2_attl_arr,

cond2_att2_arr,dec_attl_arr,decl_sub);

valuesub(no of cases,condl_attl_arr,condl_att2_arr,cond2_attl_arr,

cond2_att2_arr,dec_att2_arr,dec2_sub);

value_inter(no_of_cases,condl_attl_arr,condl_att2_arr,cond2_attl_

arr,

cond2_att2_arr,dec_attl_arr,decl_inter);

value_inter(no_of_cases,condl_attl_arr,condl_att2_arr,cond2_attl_

arr,
cond2 att2 arr,dec att2 arr,dec2_inter);

print_rules(decl_sub,dec2_sub,decl_inter,dec2_inter);

end;

until (m_ch = '3');
end. ( MAIN }
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